Calculating Float : Calculating Float Activity Precedence Duration Start 0 D Start 4 A Start 6 F D, A 7 E D 8 G F, E 5 B F 5 H G 7 C H 8 End C, B 0 1. What is the duration of the critical path? A) 32 B) 33 C) 31 D) 35 2. What is the float of activity B? A) 0 B) 16 C) 10 D) 15 3. What is the float of Activity F? A) 0 B) 5 C) 13 D) 7 BEST VIEWED IN SLIDE SHOW MODE www.qvive.biz
PowerPoint Presentation : Start End “A” “B” “C” “D” “E” “F” “G” “H” “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Q A 1 2 3 1. Precedence Diagram Calculating Float BEST VIEWED IN SLIDE SHOW MODE
PowerPoint Presentation : Start End “A” “B” “C” “D” “E” “F” “G” “H” “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Q A 1 2 3 Calculating Float
PowerPoint Presentation : “A” “B” “C” “D” “E” “F” “G” “H” Start End Q A 1 2 3 6 5 8 4 8 7 5 7 “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Calculating Float
PowerPoint Presentation : “A” 0 “B” “C” “D” 0 “E” “F” “G” “H” Start End “X” ES EF LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Q A 1 2 3 6 5 8 4 8 7 5 7 6 4 6 13 4 12 13 18 25 33 13 18 18 25 The latest Late Finish of the preceding activities determines Early Start 6 4 13 12 0 + 6 = 6 Calculating Float
PowerPoint Presentation : “A” 0 6 6 “B” 13 18 5 “C” 25 33 8 “D” 0 4 4 “E” 4 12 8 “F” 6 13 7 “G” 13 18 5 “H” 18 25 7 Start End “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Q A 1 2 3 The latest Early Finish of the preceding activities determines Critical Path 12 13 18 33 6 4 Calculating Float B
PowerPoint Presentation : “A” 0 6 6 “B” 13 18 5 “C” 25 33 8 “D” 0 4 4 “E” 4 12 8 “F” 6 13 7 “G” 13 18 5 “H” 18 25 7 Start End “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Q A 1 B 2 3 0 0 0 0 0 Activities on the Critical Path have Zero Float Calculating Float A
PowerPoint Presentation : “A” 0 6 6 “B” 13 18 5 “C” 25 33 8 “D” 0 4 4 “E” 4 12 8 “F” 6 13 7 “G” 13 18 5 “H” 18 25 7 Start End “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Q A 1 B 2 3 A 0 0 0 0 0 0 6 25 33 6 13 13 18 18 25 Activities on the Critical Path have LS=ES and LF=EF Calculating Float
PowerPoint Presentation : “A” 0 6 0 6 6 0 “B” 13 18 5 “C” 25 33 25 33 8 0 “D” 0 4 4 “E” 4 12 8 “F” 6 13 6 13 7 0 “G” 13 18 13 18 5 0 “H” 18 25 18 25 7 0 Start End Q A 1 B 2 3 A 33 28 1 5 5 13 15 1 1 “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) The earliest Late Start of the following activities determines Late Finish 33 – 5 = 28 28 – 13 = 15 6 5 Calculating Float D
PowerPoint Presentation : “A” 0 6 0 6 6 0 “B” 13 18 28 33 5 15 “C” 25 33 25 33 8 0 “D” 0 4 1 5 4 1 “E” 4 12 5 13 8 1 “F” 6 13 6 13 7 0 “G” 13 18 13 18 5 0 “H” 18 25 18 25 7 0 Start End “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Q A 1 B 2 D 3 A Calculating Float What else can we learn from this example?
PowerPoint Presentation : “A” 0 6 0 6 6 0 “B” 13 18 28 33 5 15 “C” 25 33 25 33 8 0 “D” 0 4 1 5 4 1 “E” 4 12 5 13 8 1 “F” 6 13 6 13 7 0 “G” 13 18 13 18 5 0 “H” 18 25 18 25 7 0 Start End “X” ES EF LS LF D F 1. Precedence Diagram 2. Durations 3. Forward Pass (ES EF) 4. Critical Path 5. Float of Critical Path Activities 6. Backward Pass (LF LS) Q A 1 B 2 D 3 A 1 1 Project has increased RISK because of a Near-Critical Path Calculating Float